

- **Transition Bath**
- Local voluntary charity interested in Sustainability:

www.transitionbath.org

http://transitionbath.org/newsletter-signup/

- Three main groups
 - Energy
 - Food
 - Transport

- Schools Energy
- Thermal Imaging
- LED Lighting (library based 'try-before-you-buy kit)
- Planning and consultations
- Bath Green Homes
- Blower door
- Bath & West Community Energy (6.5MW solar PV)

- Project started in 2011 to help schools save energy
- Early on we noticed there was a wide disparity on energy use per floor area (m²) – up to a factor of 6 – but not related to the age of the building – used this to target schools using DEC data
- Smart Meter (AMR) data became available ½ hourly meter readings could be used to understand how well a schools was using energy

- 2012 started analysing schools AMR data using spreadsheets
- 2013 we were involved in paid energy survey of 75 B&NES schools and 200+ electricity and gas meters

By week of year: look for correlation with 'Degree Days', usage in holidays

By time/day: look for usage outside opening hours (15% of year)

By time of day: starts too early – optimum start, radiator type and thermostat location issue

Thermostatic Analysis: degree days versus daily consumption

Hot Water: try to infer efficiency by analysing summer use, particularly if hot water is accidently left on over holidays (e.g. May Day) often less than 20% efficient – should be 90%!

Comparative Benchmark: typically per pupil or per m²

Rank	School	kWh/pupil
1	Primary School	137.8
2	Primary School	174.8
3	C of E Infant School (VC)	175.2
4	Infant School	192.8
28	C of E Junior School (VC)	440.2
29	Primary School	545.5
30	Junior School	699.7
31	Primary	1006.0

By time/hour of day

Rank	School	Туре	School	School	Weeke	Holiday
			Hours	Days	nds	S
				Out of		
				Hours		
1	Primary School	Primary	70%	12%	8%	10%
2	C of E Primary	Primary	69%	14%	6%	11%
3	School	Primary	67%	13%	8%	13%
4	Primary School	Primary	67%	12%	6%	15%
42	Primary School		47%	23%	12%	19%
43	School		45%	20%	13%	21%
44			45%	21%	13%	21%
45	School		44%	20%	14%	22%

Intraday: more lighting, boiler pumps, heating in winter

Note: high base load – 5 kW when school empty

Baseload: needs fixing at many schools, could lead to big as schools unoccupied for 85% of year

Rank	School (consumption normalised to 200 pupils)	Average	
		Baseload	
		kW	
1	Primary School –	1.45	
2	Primary School	1.73	
3	Infant School	1.74	
4	Primary School (VA)	1.81	
5	School (VC)	1.82	
6	Infant School (VC)	1.91	
7	Junior School (VA)	1.92	
24	Primary School (VC)	4.70	
25	Primary School	4.80	
26	Primary School	5.64	
27	Primary School (VC)	6.21	
28	Junior School (VC)	7.02	
29	, School	7.21	
30	School	11.49	
31	Primary School	19.12	

Sometimes caused by swimming pools

Modelling: try to automatically fit model of school consumption to provide breakdown for targeting

Modelling: Secondary schools have different profile – more IT

School Comparison (normalised to 1,000 pupils)

Transition Bath

Shortcomings of Excel based analysis

- Can only analyse one school at a time
- Multi-year analysis more difficult
- Time-consuming:
 - 20 minutes per meter to setup
 - 1 to 3 hours to generate a report
- But:
 - Good for cleaning bad data
 - Eyeballing and drilling down into specific issues

What can Bath Hacked Do?

- Provide high level comparisons between schools competition?
- Provide multi-year comparison but sometimes need to adjust heating for temperature

Transition Bath

- Schools Energy project not active
 - Partly because getting access to data difficult
 - Energy costs sometimes not a priority at a school
 Ofsted rules!
 - Low energy costs make it challenging
 - But, pupil involvement leads to good life skills energy is invisible, climate change and saving the planet more of a concern for youngsters